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Abstract: We report on a scaling test of several mesonic observables in the non-

perturbatively O(a) improved Wilson theory with two flavors of dynamical quarks. The ob-

servables are constructed in a fixed volume of 2.4 fm×(1.8 fm)3 with Schrödinger functional

boundary conditions. No significant scaling violations are found. Using the kaon mass de-

termined in [1], we update our estimate of the Lambda parameter to Λ
(2)

MS
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1. Introduction

In this article we summarize the results of a set of simulations of QCD with two degenerate

flavors of quarks employing Schrödinger functional boundary conditions [2]. The range

of quark masses covered corresponds to a ratio of the pseudoscalar mass to the vector

mass, MPS /MV, in the interval [0.4, 0.75]. Our final goal is to compute the fundamental

parameters of perturbative QCD, namely the scale parameter Λ and the quark masses Mq,

in units of a hadronic observable such as the Kaon decay constant FK. We emphasize our

effort to control all systematics. Here we focus on cutoff effects and reach (for one quark

mass) a lattice spacing that is smaller than those previously achieved in large-volume

simulations of the O(a) improved Wilson action [1, 3 – 5].

While simulations of QCD with at least Nf = 2 + 1 flavors of sea quarks are manda-

tory to provide accurate non-perturbative predictions with direct phenomenological im-

plications, in our view the Nf = 2 theory represents a framework well suited to address

a number of fundamental aspects of low-energy QCD that have not been clarified yet, a

couple of which we shall presently mention.

One such question is the Nf dependence of ΛMS /FK and Ms/FK. Since these quantities

have been computed in the quenched theory [6, 7], it is interesting to know the separate

effects of the (up, down) quarks and those of the strange quark. To our knowledge, the

influence of the strange sea quarks on hadronic observables has not been demonstrated

very clearly so far.

Secondly, it is important to determine the quark mass at which one-loop SU(2) chiral

perturbation theory becomes accurate at the (say) 3% level. We see a strong motivation to

address this question in the Nf = 2 theory, with one parameter less to tune on the QCD side.

And with a small number of low-energy constants in the chiral perturbation theory, this is

probably the cleanest way to establish the latter as the low-energy description of QCD from

first principles. Given the level of accuracy one is interested in, all sources of systematic
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error have to be addressed. In particular any observed non-linearity in the quark-mass

dependence of FPS and M2
PS must first be shown to survive the infinite volume limit before

it can be claimed that the chiral logarithms have been observed. Cutoff effects represent an

additional source of systematic uncertainty, which is computationally expensive to reduce.

In particular, cutoff effects may be larger in the presence of sea-quarks [8]. It is therefore

important to control cutoff effects, particularly as one proceeds to simulate deeper in the

chiral regime.

In the quenched work [10], rather accurate results were obtained in the pseudoscalar

and vector channels using the Schrödinger functional. In this paper we carry over this

computational setup to the Nf = 2 theory. The accuracy achieved [10] on masses was

comparable to the calculations performed with periodic boundary conditions, and for decay

constants the Schrödinger functional even proved to be the superior method. This is

different when dynamical fermions are present. As shown in [11] multi-pion excited states

contribute significantly. For a computation of ground state masses and matrix elements

they have to be supressed by a rather large time extent of the Schrödinger functional —

in particular when the quark mass is low. In this situation it is more practical to employ

(anti)periodic boundary conditions with the associated translation invariance in time. We

can nonetheless use our simulation results to perform a first scaling test of the Nf = 2

O(a)-improved theory at low energies. Note that at high energies and correspondingly

small lattice spacings excellent scaling has been seen [12, 13]. Besides the scaling test we

give some details of our simulations including the algorithmic performance (section 2).

2. Lattice simulations

Our discretization consists of the Wilson gauge action and the non-perturbatively O(a)

improved Wilson quark action, with csw given in [14]. The algorithm and solver used in

the present simulations have been described in some detail in [15, 16]. Using the notation

of [17] for the hopping terms of the Dirac operator1, we recall the Schur complements of

the hermitian Dirac operator with respect to asymmetric and symmetric even-odd precon-

ditioning Q̂A, Q̂

Q̂A = ĉ γ5(Moo − MoeM
−1
ee Meo) , Q̂ = M−1

oo Q̂A , ĉ = (1 + 64κ2)−1. (2.1)

The action then reads

S = SG + Spf + Sdet, (2.2)

with

Spf = φ†
0

[

Q̂Q̂† + ρ2
0M

−2
oo

]−1
φ0 + φ†

1

[

ρ−2
0 + Q̂−2

A

]

φ1 (2.3)

Sdet = (−2) log det Mee + (−2) log det Moo, (2.4)

and SG is the plaquette action. The determinants appearing in Sdet are taken into account

exactly.

1
Moo, Mee correspond to 1 + Too and 1 + Tee respectively in [17, 16].
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sim. β (L/a)3 × T/a κ L∗/a ZA ZP

A1 5.5 323 × 42 0.13630 10.68(15) 0.805(5) 0.5008(70)

B1, B
′
1 0.13550

B2 5.3 243 × 32 0.13590 7.82(6) 0.781(8) 0.4939(34)

B3 0.13605

B4 0.13625

C1 5.2 163 × 32 0.13568 6.51(12) 0.769(12) 0.4788(5)

C2 243 × 32 0.13568

Table 1: Simulation parameters. We use L∗, defined by ḡ2(L∗) = 5.5, as a reference scale. The

renormalization factor of the axial current [18, 19], ZA, and of the pseudoscalar density [12] at

scale µren are listed.

mol. dyn. Nrep · τtot ρ0 〈N (0)
CG〉 〈N (1)

CG〉 Pacc

A1 [LF; 2; 5; 50] 1 · 4340 0.019803 170 824 88%

B1 [SW; 2; 1; 64] 2 · 2400 0.0300 100 482 91%

B′
1 [SW; 1

2 ; 1; 16] 2 · 1750 0.0300 100 485 90%

B2 [SW; 1
2 ; 1; 16] 2 · 1900 0.0300 102 729 90%

B3 [LF; 2; 5; 50] 2 · 2600 0.019803 143 905 91%

B4 [LF; 2; 5; 50] 2 · 1448 0.0180 155 1195 87%

C1 [LF; 2; 5; 64] 1 · 6500 0.0198 179 791 96%

C2 [LF; 2; 5; 80] 2 · 2080 0.0198 184 1086 94%

Table 2: Algorithmic parameters of the simulations. The molecular dynamics is characterized by

[Integrator; τ ; δτ1/δτ0; τ/δτ1], where the integrator can be ‘leap-frog’ or ‘Sexton-Weingarten’ and

subscripts refer to the two pseudofermions in use. For the gauge force, the SW integrator with

δτ0/δτg = 4 is used in all cases, and 〈N (k)
CG〉 is the number of conjugate-gradient iterations used to

solve the symmetrically even-odd preconditioned Dirac equation during the trajectory.

In table 1 and table 2 we list the simulations discussed in this paper. The reference

length scale L∗ is defined through ḡ2(L∗) = 5.5, where ḡ is the Schrödinger functional

coupling, and the values it assumes at the relevant bare couplings were presented in [11].

For an estimate of L∗ in fermis, one may use the result a = 0.0784(10)fm at β = 5.3 [1],

yielding L∗ ≈ 0.6fm.

Renormalization is carried out non-perturbatively in the SF at the scale µren = 1/Lren,

where ḡ2(Lren) = 4.61. The values of the renormalization factor ZP of the pseudoscalar

density are taken from [18], while the values of the renormalization factor ZA of the axial

current differ from [18]. They are presently re-evaluated using a Ward identity in a 1.8 fm×
(1.2 fm)3 Schrödinger functional where the O(a2) effects are significantly smaller than

before. In the table we list our preliminary numbers [19], which are not expected to change

by more than the quoted errors.

2.1 Stability and the spectral gap

The spectral gap µ of the Hermitian Dirac operator was used in [20] as a tool to diagnose
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Figure 1: Histogram of µ̂ for two different spatial volumes, simulations C1 and C2. The median

is indicated in each case by the vertical dashed line.

the stability of the HMC algorithm. We define

µ̂ =
1

4κĉ
min

{√
λ

∣

∣

∣
λ is an eigenvalue of Q̂Q̂†

}

, (2.5)

normalized such that it is given by the quark mass in the free theory with periodic boundary

conditions. Since the only term that can potentially lead to unbounded fluctuations of the

molecular dynamics forces is associated with Q̂, a sufficient condition for the stability of the

algorithm is for the distribution of µ̂ to be well separated from the origin. We remark that

µ̂ and µ (which was considered in [20]) cannot be directly compared on a quantitative level

as they differ by the boundary conditions in the time direction and due to our (symmetric)

even-odd preconditioning. We obtained µ̂ by computing the lowest eigenvalue of Q̂Q̂† using

the algorithm of [21]. Figure 1 displays the histogram of µ̂ for simulations C1,2. There is

a clear separation of the median of the distribution from the origin, but in a few cases in

the course of the simulations eigenvalues as small as a third of this value were seen.

We consider now the variance σ̂2 of µ̂. In [20], a measure σ of the width of the µ

distribution was found to approximately satisfy aσ
√

L3T/a4 ≈ constant. In the subset of

our simulations where we computed µ̂, we find

σ̂
√

L3T/a =











1.437(64) A1

1.268(23) C1

1.477(33) C2 ,

(2.6)

varying only by about 15%.
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τint[O] P m(T/2) mA
eff(T/2) mP

eff(T/2) Feff (T/2) mV
eff(T/2) Geff(T/2)

A1 5.0(9) 4.9(9) 11(3) 21(6) 10(2) 40(10) 23(7)

B1 13(3) 5.5(9) 7(1) 16(4) 4.2(7) 23(7) 11(3)

B′
1 6(1) 6(1) 10(2) 22(7) 14(4) 24(8) 12(3)

B2 4.1(7) 4.1(7) 10(3) 14(4) 8(2) 23(7) 24(8)

B3 9(2) 3.9(6) 4.7(7) 11(2) 6(1) 11(3) 11(2)

B4 8(2) 5(1) 6(1) 7(2) 4.6(9) 15(5) 8(2)

C1 9(2) 5.3(8) 5.2(8) 5.1(8) 4.7(7) 4.9(7) 5.6(9)

C2 11(3) 6(1) 6(1) 7(1) 3.9(6) 6(1) 6(1)

Table 3: The integrated autocorrelation times for the plaquette, the current quark mass, the

effective pseudoscalar mass and decay constant, and the effective vector mass. The unit is molecular

dynamics time, i. e. trajectories times the length of the trajectory. For a precise definition of the

observables see the following section.

2.2 Autocorrelation times

We compile observed integrated autocorrelation times τint [23] in table 3 for five quantities

discussed and defined in detail in the next section. The dependence of the autocorrelation

times on the trajectory length was discussed previously [24]. We stress that autocorrelations

have to be monitored for each observable separately. We do not see a trend in table 3 that is

both pronounced and statisticallly significant, either as a function of the quark mass or as a

function of the lattice spacing. For our present purposes, the most important information

in table 3 is that all autocorrelations are small compared to the length of the runs (cf.

table 2). Error estimates are hence trustworthy.

3. Scaling test

In this section, which represents the central part of this paper, we investigate the cut-

off effects on a number of non-perturbatively renormalized quantities. In order to keep

systematic effects due to a varying volume negligible, we compare series of simulations

in a fixed (but quite large) volume on a physical scale. More precisely we determine

L/L∗ = 3.00(4), 3.07(3) and T/L∗ = 3.93(4), 4.09(3) on the A and B lattices. At β =

5.2, the volumes came out less uniform, L(C1)/L
∗ = 2.46(5), L(C2)/L

∗ = 3.69(6) and

T (Ci)/L
∗ = 4.92(10). We shall discuss how to correct for these small mismatches after

introducing the finite volume observables of this study.

They are extracted from the zero spatial momentum boundary-to-bulk correlation

functions, fA(x0) , fP(x0) in the pseudoscalar channel, kV(x0) in the vector channel and the

boundary-to-boundary pseudoscalar correlator f1 [10]. We include the O(a) improvement

term proportional to cA [22] in fA,I = fA +a cA ∂0 fP. Effective masses and decay constants

mA
eff(x0) ≡ −1

2
(∂∗

0 + ∂0) log(fA,I(x0)) (3.1)

mP
eff(x0) ≡ −1

2
(∂∗

0 + ∂0) log(fP(x0)) (3.2)
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sim. am a mA
eff amP

eff a mV
eff

a Feff

ZA (1+bAa mq)
a2 Geff

ZP (1+bpa mq)

A1 0.015519(37) 0.1800(20) 0.1793(15) 0.2821(50) 0.05999(42) 0.0629(10)

B1 0.03388(12) 0.3272(18) 0.3236(16) 0.4520(35) 0.09451(41) 0.1507(14)

B2 0.019599(95) 0.2391(35) 0.2406(19) 0.3953(51) 0.08442(68) 0.1267(22)

B3 0.01460(11) 0.2118(24) 0.2066(17) 0.3647(35) 0.07714(60) 0.1170(13)

B4 0.00727(14) 0.1423(55) 0.1528(20) 0.3058(69) 0.0698(11) 0.0985(15)

C1 0.01401(21) 0.2173(55) 0.2338(24) 0.4354(60) 0.0877(13) 0.1637(25)

C2 0.01442(14) 0.2328(39) 0.2261(15) 0.4152(42) 0.08773(67) 0.1614(15)

CI 0.01431(19) 0.2286(97) 0.2282(63) 0.410(14) 0.08772(61) 0.1620(17)

Table 4: Simulation results for the effective quantities evaluated at x0 = T/2. The bare current

quark mass has been averaged over T/3 ≤ x0 ≤ 2T/3. The last line gives the interpolation of

C1, C2, including the corrections described in the text.

mV
eff(x0) ≡ −1

2
(∂∗

0 + ∂0) log(kV(x0)) (3.3)

Feff (x0) ≡ −2ZA
fA(x0) (1 + bAamq) exp(mA

eff(x0)(x0 − T/2))
(

f1 mA
eff(x0)L3

)1/2

= −2ZA (1 + bAamq)
fA,I(T/2)

(

f1 mA
eff(T/2)L3

)1/2
at x0 = T/2 (3.4)

Geff (x0) ≡ 2ZP (1 + bpamq)
fP(x0) exp(mP

eff(x0)(x0 − T/2)) mP
eff(x0)

1/2

(f1 L3)1/2

= 2ZP (1 + bpamq)
fP(T/2) mP

eff(T/2)1/2

(f1 L3)1/2
at x0 = T/2 (3.5)

are related to (L-dependent) masses and matrix elements,

mA
eff(x0) ≈ MPS ≈ mP

eff(x0) , mV
eff(x0) ≈ MV , Feff (x0) ≈ FPS , Geff (x0) ≈ GPS .(3.6)

These relations hold in the limit of large x0 and T up to correction terms [10]

Oeff (x0) = O + ηO exp(−(E1 − MPS)x0) + η̃O exp(−E2 (T − x0)) + . . . , (3.7)

where the coefficients ηO and η̃O are ratios of matrix elements, E1 is the energy of the first

excitation in the zero momentum pion channel and E2 in the vacuum channel. For not too

small L and not too large MPS we expect E1 ≈ 3MPS and E2 ≈ 2MPS. Our results for

the effective observables at x0 = T/2 are listed in table 4 together with the bare current

quark mass m stabilized by averaging over T/3 ≤ x0 ≤ 2T/3,

m =
1

n2 − n1 + 1

n2
∑

x0/a=n1

m(x0) , n1 ≥ T/3a , n2 ≤ 2T/3a (3.8)

m(x0) =
1
2 (∂∗

0 + ∂0)fA(x0) + cA a∂∗
0∂0fP(x0)

2fP(x0)
. (3.9)
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sim. am a MPS aMV
a FPS

ZA (1+bAa mq)
a2 GPS

ZP (1+bpa mq)

D1 0.03386(11) 0.3286(10) 0.464(3) 0.0949(13) 0.1512(20)

D2 0.01957(07) 0.2461(09) 0.401(3) 0.0815(10) 0.1260(16)

D4 0.00761(07) 0.1499(15) 0.344(9) 0.0689(13) 0.1017(24)

Table 5: Observables from fits of [3] i.e. x0, T → ∞. Input parameters β, κ and L/a match those

of lattices B1, B2, B4; note that D4 has been renamed here compared to [3].

The results at β = 5.3 can be compared directly to those of [3], shown in table 5,

for which the correction terms in eq. (3.7) can safely be neglected. In other words they

correspond to x0, T → ∞. This allows us to estimate the effects due to T (C) > T (A) ≈
T (B) in addition to those coming from the mismatch in L.

1. For the matrix elements Feff , Geff no systematic differences between B and D lattices

are visible. No correction due to T is necessary. We just interpolate the C1 and C2

results in L to L/L∗ = 3 using the Ansatz a1 + a2 L−3/2e−MPS L, with MPS the pion

mass on the larger volume. A small systematic error is added linearly to the statistical

one. It is estimated by comparing with the result from an alternative interpolation

with a′1 + a′2 L−1.

2. We observe |mP
eff(B)/mP

eff (D) − 1| ≤ 0.03 without a systematic trend as a function

of the quark mass. We take this into account as a systematic error of 2% on mP
eff(C)

and2 subsequently we interpolate in L as in 1. The numbers for mA
eff are not used

further.

3. Finite T effects are not negligible in the vector mass (mV
eff(B)/mV

eff (D) − 1 ≈
−0.10 . . . − 0.03). We thus first perform a correction for the finite T effects us-

ing fits to eq. (3.7) with E1 = 2(MPS
2 +(2π/L)2)1/2, E2 = 2MPS. A systematic error

of 50% of this correction is included for the result. Next the finite L correction is

performed as above.

The interpolated values are included in table 4 as “simulation” CI. After these small

corrections we are ready to look at the lattice spacing dependence of our observables.

To this end the necessary renormalization factors are attached (with perturbative values

for bA, bp [25]) and we form dimensionless combinations by multiplying with L∗. At lowest

order in the quark mass expansion (in large volume), one has M2
PS ∝ m. It is thus natural to

consider [mP
eff L∗]2/[m̄(µren)L∗] instead of the quark mass itself. We choose m̄ renormalized

non-perturbatively in the SF scheme at scale µren = 1/Lren where ḡ2(Lren) = 4.61 [12]. The

quantities considered are shown in figure 2 as a function of the dimensionless [mP
eff L∗]2.

At β = 5.3 we have a few quark-mass points. As a reference, these are locally interpolated

in [mP
eff L∗]2 with a second order polynomial. For masses lighter than in simulation B2,

the interpolation involves the lightest three masses and for heavier ones, it involves the

2From eq. (3.7) this finite T effect scales with exp(−MPS T ), yielding a reduction of 3% by a factor

[1 − exp(−MPS L
∗)] when one considers the difference between T ≈ 5L

∗ and the target T = 4L
∗.
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Figure 2: Dimensionless renormalized finite volume observables as a function of [mP
eff L∗]2. From

top to bottom Geff(L∗)2, mV
eff L∗, 4 Feff L∗ , [mP

eff L∗]2/[m̄(µren)L∗]/15 are shown. Squares, circles

and triangle are for β = 5.2 , 5.3 , 5.5 respectively. Effective quantities are at x0 = T/2. The

dotted band is an interpolation of the β = 5.3 data as described in the text.

heaviest three masses. The two-sigma bands (±2σ) of these interpolations are depicted as

dotted vertical lines. Our results at the other β-values are seen to be in agreement with

these error bands, which are generally around 5%, but 10% for [mP
eff L∗]2/[m̄(µren)L

∗] after

all errors are included. Even if the precision is not very impressive, large cutoff effects are
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Figure 3: The effective pseudoscalar masses mA
eff and mP

eff in simulations B2 and A1. The horizontal

error bars are shown on some of the points only for clarity. The horizontal line is to guide the eye.

The vertical line indicates the middle of the B2 lattice.

clearly absent.

So far we have discussed the scaling of the ground state properties for a given symmetry

channel. We now turn to the size of cutoff effects affecting excited state contributions to the

correlators. Figure 3 compares the effective pseudoscalar masses mA
eff and mP

eff in simulation

A1 and B2. The large size of the excited state contributions [11], while a drawback in

extracting ground state properties, means that these functions are rather sensitive to the

aforementioned cutoff effects. Because the A1 time extent is shorter by 4(1)%, on this

figure we have separately aligned the two boundaries of lattice A1 and B2. We observe

that the two data sets are consistent within uncertainties well before the function flattens

off. With the exception of mP
eff for x0 < T/2, the agreement sets in at a distance to the

closest boundary of about L∗, where it is easily seen that several excited states contribute

significantly to the correlation functions. Altogether this figure is evidence that the masses

and matrix elements of the first excited state in both the pion and vacuum channel have

scaling violations not exceeding the few percent level. But higher states can have rather

significant discretization errors.

4. Conclusion and an updated value of Λ
(2)

MS

We carried out a finite size scaling test of the standard non-perturbatively O(a)-

improved [26, 27, 14] Wilson theory with two flavors of dynamical fermions. In contrast

to previous indications [8], cutoff effects are rather small in the present situation where
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the linear extent of the volume is around 1.6 fm. In fact within our precision of about 5%

(collecting all errors) for effective masses and matrix elements, no a2 effects are visible.

Continuum extrapolations of data from (say) 0.08 fm ≤ a ≤ 0.04 fm lattices which can

nowadays be simulated [28, 29], seem very promising. Such a programme has been initi-

ated [30]. A complementary effort [31] uses the twisted mass regularization of QCD [32].

Also in this case linear a-effects are absent [33] and the O(a2) effects appear to be moder-

ate [34].

Finally we exploit the increased confidence in the scaling behavior of the simulated

lattice theory to slightly refine our earlier estimate of the Λ-parameter. In [13] the product

L∗ ΛMS = 0.801(56) was computed non-perturbatively in the two-flavor theory. Setting

the scale through r0 = 0.5 fm the value Λ
(2)

MS
= 245(16)(16)MeV was obtained emphasizing

that more physical observables should be used in the future to set the scale. Given the

quality of scaling observed in the previous section, it seems safe to assume that L∗mK in

the continuum limit differs by no more than 5% from its value at β = 5.3 where mKa =

0.197(10) from [1, 3] and L∗/a = 7.82(6) [11] are known. We have used mK = mK,ref

(defined in [1]), with an error of 5% to account for the fact that mK,ref is defined at

larger pion masses than in the physical world3. We then obtain Λ
(2)

MS
/mK = 0.52(6) or

Λ
(2)

MS
= 257(26)MeV, where a 5% uncertainty for a possible scaling violation has been

added to the error (in quadrature). The new estimate is a bit higher than the previous

one [13].
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[20] L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, Stability of lattice QCD

simulations and the thermodynamic limit, JHEP 02 (2006) 011 [hep-lat/0512021].

[21] T. Kalkreuter and H. Simma, An accelerated conjugate gradient algorithm to compute low

lying eigenvalues: a study for the Dirac operator in SU(2) lattice QCD, Comput. Phys.

Commun. 93 (1996) 33 [hep-lat/9507023].

[22] M. Della Morte, R. Hoffmann and R. Sommer, Non-perturbative improvement of the axial

current for dynamical Wilson fermions, JHEP 03 (2005) 029 [hep-lat/0503003].

[23] ALPHA collaboration, U. Wolff, Monte Carlo errors with less errors, Comput. Phys.

Commun. 156 (2004) 143 [Erratum ibid. 176 (2007) 383] [hep-lat/0306017].

[24] H.B. Meyer et al., Exploring the HMC trajectory-length dependence of autocorrelation times

in lattice QCD, Comput. Phys. Commun. 176 (2007) 91 [hep-lat/0606004].

[25] S. Sint and P. Weisz, Further results on O(a) improved lattice QCD to one-loop order of

perturbation theory, Nucl. Phys. B 502 (1997) 251 [hep-lat/9704001].

[26] B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with

Wilson fermions, Nucl. Phys. B 259 (1985) 572.
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